SYMMETRIC SPACES WHICH ARE REAL COHOMOLOGY SPHERES #### JOSEPH A. WOLF This is a survey in which we collate some known results using semi-standard techniques, dropping the condition of simple connectivity in Kostant's work [2] and proving **Theorem 1.** Let M be a compact connected riemannian symmetric space. Then M is a real cohomology (dim M)-sphere if and only if - (1) M is an odd dimensional sphere or real projective space; or - (2) $M = \overline{M}/\Gamma$ where (a) $\overline{M} = \mathbf{S}^{2r_1} \times \cdots \times \mathbf{S}^{2r_m}$, $r_i > 0$, product of $m \geq 1$ even dimensional spheres, and (b) Γ consists of all $\gamma = \gamma_1 \times \cdots \times \gamma_m$, where γ_i is the identity map or the antipodal map of \mathbf{S}^{2r_i} , and the number of γ_i which are antipodal maps, is even; or - (3) M = SU(3)/SO(3) or $M = {SU(3)/Z_3}/SO(3)$; or - (4) $M = \mathbf{O}(5)/\mathbf{O}(2) \times \mathbf{O}(3)$, non-oriented real grassmannian of 2-planes through 0 in \mathbb{R}^5 . - In (2) we note $\pi_1(M) = \Gamma \cong (\mathbf{Z}_2)^{m-1}$; in particular the even dimensional spheres are the case m = 1. In (3) we note that the first case is the universal 3-fold covering of the second case. In (4) we have $\pi_1(M) \cong \mathbf{Z}_2$. Theorem 1 is based on a series of lemmas which can be pushed, with appropriate modification, to the case of a real cohomology *n*-sphere of dimension greater than *n*. Here we make the convention that a 0-sphere is a single point. By using a cohomology theory which satisfies the homotopy axiom (such as singular theory) we can also drop the requirement of compactness. Thus we push the method of proof of Theorem 1 and obtain - **Theorem 2.** Let M be a connected riemannian symmetric space. Then M is a real cohomology n-sphere, $0 \le n \le \dim M$, if and only if $M = M' \times M''$ where (α) M'' is a product whose $l \ge 0$ factors are euclidean spaces and irreducible symmetric spaces of noncompact type, and (β) M' is one of the following spaces. - (1) $M' = \overline{M} / \Gamma^{\theta}$, where $\overline{M} = \mathbf{S}^{2r_1} \times \cdots \times \mathbf{S}^{2r_m}$ is the product of $m \geq 0$ spheres of positive even dimensions $2r_i$, $\Gamma \cong (\mathbf{Z}_2)^m$ consists of all $\gamma_1 \times \cdots \times \gamma_m$ such that γ_i is the identity or antipodal map on \mathbf{S}^{2r_i} , θ is any one of the 2^m characters on Γ , and Γ^{θ} is the kernel of θ . Express $\theta = \theta_{i_1} \cdots \theta_{i_s}$, where Communicated by S. Smale, January 12, 1967. Research partially supported by National Science Foundation Grant GP-5798. - $1 \leq i_1 < \cdots < i_s \leq m$, and θ_i is the nontrivial character on the \mathbb{Z}_2 -factor of Γ for \mathbf{S}^{2r_i} . Then $n = 2r_{i_1} + \cdots + 2r_{i_m}$; so either $\theta = 1$ with n = 0 and $\Gamma^{\theta} = \Gamma \cong (\mathbb{Z}_2)^m$, or $\theta \neq 1$ with n > 0 and $\Gamma^{\theta} \cong (\mathbb{Z}_2)^{m-1}$. - (2a) $M' = (\mathbf{S}^{2r+1}/\mathbf{Z}_2) \times (\overline{M}/\Gamma)$, $r \geq 1$, and \overline{M} and Γ as in (1), product of an odd dimensional real projective space with $m \geq 0$ even dimensional real projective spaces; n = 2r + 1. - (2b) $M' = (\mathbf{S}^{2\tau+1} \times \overline{M})/\Gamma_{\theta}$, $r \geq 0$, and \overline{M} and Γ as in (1), where θ is any of the 2^m characters on Γ (viewed as taking values in the group \mathbf{Z}_2 consisting of 1 and the antipodal map of $\mathbf{S}^{2\tau+1}$), and Γ_{θ} consists of all $\theta(\gamma) \times \gamma$ with $\gamma \in \Gamma$; n = 2r + 1 and $\Gamma_{\theta} \cong (\mathbf{Z}_2)^m$. - (3) $M' = (\{\mathbf{SU}(3)/\mathbf{SO}(3)\} \times \overline{M})/\Psi$, where \overline{M} and Γ are as in (1), \mathbf{Z}_3 is the center of $\mathbf{SU}(3)$, and either $\Psi = \{1\} \times \Gamma \cong (\mathbf{Z}_2)^m$ or $\Psi = \mathbf{Z}_3 \times \Gamma \cong \mathbf{Z}_3 \times (\mathbf{Z}_2)^m$; n = 5. - (4) $M' = (\{\mathbf{SO}(5)/\mathbf{SO}(2) \times \mathbf{SO}(3)\}/\mathbf{Z}_2) \times (\overline{M}/\Gamma)$, where \overline{M} and Γ are as in (1); the first factor of M' is the non-oriented grassmannian of 2-planes in \mathbf{R}^5 , expressed as quotient of the oriented grassmannian by $\{1, \eta\} = \mathbf{Z}_2$, where η changes the orientation of each 2-plane; n = 6. - (5) $M' = (\{\mathbf{SO}(6)/\mathbf{SO}(3) \times \mathbf{SO}(3)\}/\mathbf{Z}_4) \times (\overline{M}/\Gamma)$, where \overline{M} and Γ are as in (1); the first factor of M' is quotient of the oriented grassmannian of 3-planes in \mathbf{R}^6 by $\{1, \beta, \beta^2, \beta^3\} = \mathbf{Z}_4$, where β is oriented orthocomplementation of 3-planes so $\beta^2 = \eta$ orientation change; n = 5. As an immediate consequence of Theorem 2, or of Theorem 1 in the case $n = \dim M$ to which it applies, we have **Corollary.** Let M be a connected riemannian symmetric space which is a real cohomology n-sphere. If a prime p > 3, then M is a \mathbb{Z}_p -cohomology n-sphere. M is an integral cohomology n-sphere if and only if $M = \mathbb{S}^n \times M''$ with M'' acyclic as in condition (α) of Theorem 2. # 1. Cohomology invariants of deck transformations Let M be a compact connected riemannian symmetric space. Let $\mathbf{I}(M)$ denote the full group of isometries of M, and $\mathbf{I}_0(M)$ its identity component. Now M = G/K, where $G = \mathbf{I}_0(M)$, compact connected Lie group, and K is the isotropy subgroup at a point $x \in M$. Let $s \in \mathbf{I}(M)$ denote the symmetry at x. Then the Lie algebra of G decomposes as G = K + P into (± 1) -eigenspaces of ad(s), K being the subalgebra of G for G and G representing the tangent space of G at G at G and G are obtains a graded algebra isomorphism of G and G onto the space of G and G invariant elements of G are G where G denotes dual space. That is G are Cartans's representation of cohomology by invariant differential forms; an exposition is given in G 8.5]. In particular, M is a real cohomology (dim M)-sphere if and only if the only $ad_G(K)$ -invariants in $\Lambda^*\mathbf{P}'$ are the linear combinations of $1 \in \Lambda^0\mathbf{P}'$ and the volume element $\omega \in \Lambda^n\mathbf{P}'$, $n = \dim M$. M has universal riemannian covering $\varphi \colon N \to M$, where $N = N_0 \times M_1 \times \cdots \times M_\tau$, N_0 is a euclidean space, and the M_i are compact simply connected irreducible riemannian symmetric spaces. Let $\Delta \subset \mathbf{I}(N)$ be the group of deck transformations, so $M = N/\Delta$. Then $\Delta_0 = \Delta \cap \mathbf{I}(N_0)$ is a translation lattice on N_0 , so $M_0 = N_0/\Delta_0$ is a flat riemannian torus, and φ factors through $\pi \colon \overline{M} \to M = \overline{M}/\Gamma$ where $$\overline{M} = M_0 \times M_1 \times \cdots \times M_r$$, $\Gamma = \Delta/\Delta_0$. Let $\overline{G} = \mathbf{I}_0(\overline{M})$, $\overline{x} \in \pi^{-1}(x)$, and \overline{K} be the isotropy subgroup of \overline{G} at \overline{x} . Then we have an identification of \overline{G} with G, which matches \overline{K} with K and \overline{P} with P. **1.1.** Lemma. Identify $H^*(\overline{M}; \mathbf{R})$ with the $ad_{\overline{G}}(\overline{K})$ -invariants on $\Lambda^*\mathbf{P}'$, and $H^*(M; \mathbf{R})$ with the $ad_G(K)$ -invariants on $\Lambda^*\mathbf{P}'$. Then $H^*(M; \mathbf{R})$ consists of the Γ -invariants on $H^*(\overline{M}; \mathbf{R})$. For $G = (\overline{G}\Gamma)/\Gamma$ and $K = (\overline{K}\Gamma)/\Gamma$, and the cohomology of M is given by G-invariant differential forms. Let $G_i = \mathbf{I}_0(M_i)$, and let Z_i denote the centralizer of G_i in $\mathbf{I}(M_i)$. Then $Z_0 = G_0$, the other Z_i are finite, $\overline{G} = G_0 \times G_1 \times \cdots \times G_r$, and $\overline{Z} = Z_0 \times Z_1 \times \cdots \times Z_r$ is the centralizer of \overline{G} in $\mathbf{I}(\overline{M})$. Given a subgroup $\Psi \subset \mathbf{I}(\overline{M})$, one knows that $\overline{M} \to \overline{M}/\Psi$ is a riemannian covering with symmetric quotient, if and only if Ψ is a finite subgroup of \overline{Z} . Thus $\Gamma \subset \overline{Z}$. We write Γ_i for the projection of Γ to Z_i . - **1.2.** Lemma. Let M be a real cohomology n-sphere, $n = \dim M$. Then we have just one of the following situations. - (a) M is a circle. - (b) \overline{M} is irreducible, the Γ -invariants on $H^*(\overline{M}; \mathbf{R})$ are generated by 1 and the volume element, and the Z-invariants on $H^*(M; \mathbf{R})$ are generated either by 1 or by 1 and the volume element. - (c) $\overline{M} = M_1 \times \cdots \times M_r$ with r > 1; for each i, dim $M_i > 0$ and the Z_i -invariants on $H^*(M_i; \mathbf{R})$ are just the elements $1 \cdot \mathbf{R}$ of degree 0. *Proof.* Suppose dim $M_0 > 0$. As Z_0 acts trivially on $H^*(M_0; \mathbf{R})$ it follows that $H^*(M; \mathbf{R})$ has nonzero elements of degree dim M_0 . Thus M is the torus M_0 . Now dim $M_0 = 1$, so M is a circle and we are in case (a). If \overline{M} is irreducible, the part of (b) on Γ -invariants is obvious and the statement on Z-invariants follows. Now suppose that we are neither in case (a) nor in case (b). Then $\dim M_0 = 0$ and \overline{M} is reducible, so $\overline{M} = M_1 \times \cdots \times M_r$ with r > 1 and $\dim M_i > 0$. If ϕ is a Z_i -invariant of positive degree on $H^*(M_i; \mathbf{R})$, then ϕ is Γ -invariant, so $\phi \in H^*(M; \mathbf{R})$ with $0 < \deg \phi < \dim M$. Thus the Z_i -invariants on $H^*(M_i; \mathbf{R})$ are of degree 0. ## 2. Admissible factors of M We go on to find the irreducible symmetric spaces which satisfy the conditions imposed by (b) or (c) of Lemma 1.2. - **2.1. Proposition.** Let M be a compact irreducible simply connected riemannian symmetric space, $G = \mathbf{I}_0(M)$, and Z be the centralizer of G in $\mathbf{I}(M)$. Then the Z-invariants on $H^*(M; \mathbf{R})$ - (i) are all of degree 0, if and only if M is an even dimensional sphere; - (ii) are generated by 1 and the volume element, if and only if M is an odd dimensional sphere, SU(3)/SO(3), or $SO(5)/SO(2) \times SO(3)$. - *Proof.* If M is a sphere the assertion is clear. If M is a real cohomology sphere but not a sphere, then [2] M = SU(3)/SO(3), so [4, § 9.6] Z is the center of G and the assertion follows. Now suppose that M is not a real cohomology sphere. Then Z acts nontrivially on $H^*(M; \mathbf{R})$, so $Z \not\subset G$. It follows [4, Chapters 8 and 9], [3, § 5] that M is one of the spaces: - (1) $M = SU(2n)/S[U(n) \times U(n)], Z \cong \mathbb{Z}_2;$ - (2) $M = \mathbf{SU}(2n)/\mathbf{SO}(2n), Z \cong \mathbf{Z}_{2n};$ - (3) $M = \mathbf{SO}(2r + 2s + 1)/\mathbf{SO}(2r) \times \mathbf{SO}(2s + 1), Z \cong \mathbf{Z}_2;$ - (4) $M = \mathbf{SO}(4n)/\mathbf{U}(2n), Z \cong \mathbf{Z}_2;$ - (5) $M = \mathbf{SO}(2r + 2s)/\mathbf{SO}(2r) \times \mathbf{SO}(2s),$ $Z \cong \mathbf{Z}_2 \text{ if } r \neq s, Z \cong \mathbf{Z}_2 \times \mathbf{Z}_2 \text{ if } r = s;$ - (6) $M = \mathbf{SO}(4r+2)/\mathbf{SO}(2r+1) \times \mathbf{SO}(2r+1), Z \cong \mathbf{Z}_4;$ - (7) $M = \operatorname{Sp}(n)/\operatorname{U}(n), Z \cong \mathbf{Z}_2;$ - (8) $M = \operatorname{Sp}(2n)/\operatorname{Sp}(n) \times \operatorname{Sp}(n), Z \cong \mathbb{Z}_2;$ - (9) $M = \mathbf{E}_7/\mathbf{A}_7, Z \cong \mathbf{Z}_2;$ - (10) $M = \mathbf{E}_7/\mathbf{E}_6\mathbf{T}_1, Z \cong \mathbf{Z}_2$. Let M = G/K be one of the spaces above. If rank $G = \operatorname{rank} K$, i.e. if the Euler-Poincaré characteristic $\chi(M) \neq 0$, then we have $\chi(M) = |W_G|/|W_K|$ where $W_L = \operatorname{Weyl}$ group of L. As cohomology occurs only in even degree, and as $\chi(M/Z) = \chi(M)/|Z|$, it follows that the two conditions for Z-invariants on $H^*(M; \mathbf{R})$ can be phrased - (i) $\chi(M/Z) = 1$, i.e. $|W_G|/|W_K| \cdot |Z| = 1$; - (ii) $\chi(M/Z) = 2$, i.e. $|W_G|/|W_K| \cdot |Z| = 2$. We run through the relevant cases. - (1) $\chi(M/Z) = (2n)!/n!n!2$ which is > 2 whenever n > 1; we exclude n = 1 by the condition that M is not a sphere S^2 . - (3) $r \ge 1$ because dim M > 0, and $s \ge 1$ because M is not a sphere. Thus $t = \min(r, s) \ge 1$. Now $$\chi(M/Z) = 2^{r+s}(r+s)!/\{2^{r-1}r!\}\{2^{s}s!\}2 = (r+s)!/r!s! \ge (2t)!/t!t!$$ with equality if and only if r = s, and $(2t)!/t!t! \ge 2$ with equality if and only if t = 1. Thus r = s = 1, so $M = \mathbf{SO}(5)/\mathbf{SO}(2) \times \mathbf{SO}(3)$, and $\chi(M/Z) = 2$. - (4) $\chi(M/Z) = 2^{2n-1}(2n)!/(2n)!2 = 2^{2n-2}$ which is > 2 whenever n > 1; we exclude n = 1 because M is not a product $S^2 \times S^2$ of spheres. - (5) $r \ge 1$ and $s \ge 1$ because dim M > 0. We exclude the case r = s = 1 because M is not a product $\mathbf{S}^2 \times \mathbf{S}^2$ of spheres. Now we may assume $1 \le r \le s$ with s > 1. If r = s, then $$\chi(M/Z) = 2^{2r-1}(2r)!/\{2^{r-1}r!\}\{2^{r-1}r!\}4 = (2r)!/r!r!2 \ge 3.$$ If r < s, then $$\chi(M/Z) = 2^{r+s-1}(r+s)!/\{2^{r-1}r!\}\{2^{s-1}s!\}2 = (r+s)!/r!s! > (2r)!/r!r! \geq 2.$$ - (7) n > 1 because M is not a sphere S^2 . If n = 2 then $M = \operatorname{Sp}(2)/\operatorname{U}(2) = \operatorname{SO}(5)/\operatorname{SO}(2) \times \operatorname{SO}(3)$ was considered under (3). Now suppose n > 2; then $\gamma(M/Z) = 2^n n! / n! 2 = 2^{n-1} > 2$. - (8) $\chi(M/Z) = 2^{2n}(2n)!/\{2^n n!\}\{2^n n!\}2 = (2n)!/n!n!2$ which is >2 for n > 1; and we exclude the case n = 1 because M is not a sphere S^4 . - (9) $\chi(M/Z) = 2^{10} \cdot 3^4 \cdot 5 \cdot 7/8! \cdot 2 = 36 > 2.$ - (10) $\chi(M/Z) = 2^{10} \cdot 3^4 \cdot 5 \cdot 7/2^8 \cdot 3^4 \cdot 5 = 28 > 2.$ Hence our assertions are proved in case rank G=rank K. Now we must check the spaces listed under (2) and (6). For those spaces M = G/K we will decompose $\mathbf{I}(M)$ as a union of components $\alpha_i G$, $\alpha_1 = 1$, such that its isotropy subgroup is a union of components $\alpha_i K$. If $z \in Z$, say $z \in \alpha_i G$, then z and α_i have the same action on $H^*(M, \mathbf{R})$, the space of $ad_G(K)$ -invariants on $\Lambda^*\mathbf{P}'$. Thus we must analyse the action of K on \mathbf{P}' , picking out an invariant $\varphi \in \Lambda^k \mathbf{P}'$, such that $0 < k < \dim M$ and such that $\alpha_i(\varphi) = \varphi$ whenever Z meets $\alpha_i G$. (2) M = SU(2n)/SO(2n). Here $G = SU(2n)/\{\pm I\}$ has center \mathbb{Z}_n which has index 2 in $Z \cong \mathbb{Z}_{2n}$. Note that n > 1 because M is not a sphere S^2 . We have [3, p. 88] $\mathbb{I}(M) = G \cup sG \cup \alpha G \cup s\alpha G$ with isotropy subgroup $K \cup sK \cup \alpha K \cup s\alpha K$ where s is the symmetry and $ad(\alpha)|_K = ad(a)|_K$ for a matrix $a = \text{diag}\{-1; 1, \dots, 1\} \in O(2n)$. If \mathbb{Z}_2 denotes the subgroup of order 2 in \mathbb{Z} , then $\mathbb{Z}_2 = \{1, \beta\}$ with $\beta \in \alpha G$. Thus we need only find a nonzero K-invariant $\varphi \in \Lambda^k \mathbf{P}'$, $0 < k < \dim M$, such that $\alpha(\varphi) = \varphi$. The action of $K = \mathbf{SO}(2n)$ on the second symmetric power $S^2(\mathbf{R}^{2n})$ decomposes as $\phi \oplus \pi$, where ϕ is the (trivial) representation on the span of the element representing the invariant inner product on \mathbf{R}^{2n} , and π is equivalent to the representation of K on \mathbf{P}' . Let $\omega \in A^{2n^2+n-1}(\mathbf{P}')$ denote the volume element of M. We check that $\alpha(\omega) = -\omega$, i.e. that α has determinant -1 on \mathbf{P}' . For if the matrix a of α has form diag $\{-1; 1, \dots, 1\}$ in a basis $\{v_1, \dots, v_{2n}\}$ of \mathbf{R}^{2n} , then its (-1)-eigenvectors on $S^2(\mathbf{R}^{2n})$ are the $v_1 \cdot v_i$, $2 \le i \le 2n$, which are odd in number. Borel [1] has shown that the real cohomology of M is that of $\{S^5 \times S^9 \times \cdots \times S^{4n-3}\} \times S^{2n}$. First let n=2. Then the product is $S^4 \times S^5$ so that $H^*(M; \mathbf{R})$ has basis $\{1, \varphi_4, \varphi_5, \omega\}$, where $\varphi_i \in H^i(M; \mathbf{R})$ and $\varphi_4 \wedge \varphi_5 = \omega$. Furthermore $$\alpha(\omega) = -\omega$$ and $\chi(M/\mathbb{Z}_2) = \frac{1}{2}\chi(M) = 0$ imply $\alpha(\varphi_4) = -\varphi_4$ and $\alpha(\varphi_5) = \varphi_5$. Thus M/\mathbb{Z}_2 is a real cohomology 5-sphere of dimension 9. Now let n>2, so that $H^*(M;\mathbb{R})$ is generated by elements $\varphi_i \in H^i(M;\mathbb{R})$ of degrees $5,9,\cdots$, 4n-3, and 2n such that $(\varphi_5 \wedge \varphi_9 \wedge \cdots \wedge \varphi_{4n-3}) \wedge \varphi_{2n} = \omega$. If $\alpha(\varphi_i) = \varphi_i$ and $\alpha(\varphi_j) = \varphi_j$ for two distinct indices i,j, then M/Z is not a real cohomology sphere of any sort. If $\alpha(\varphi_i) = \varphi_i$ for a unique index i, then $\alpha(\varphi_j) = -\varphi_j$ for $j \neq i$. There are two indices $j \neq k$ distinct from i because $n \geq 3$, and now α preserves both φ_i and $\varphi_j \wedge \varphi_k$, so again M/Z is not a real cohomology sphere of any sort. (6) $M = \mathbf{SO}(4r+2)/\mathbf{SO}(2r+1) \times \mathbf{SO}(2r+1)$, grassmannian of oriented (2r+1)-planes in an oriented \mathbf{R}^{4r+2} . Then $Z = \{1, \beta, \beta^2, \beta^3\} \cong \mathbf{Z}_4$, where β is orthocomplementation, and $\beta^2 = -I$ reverses orientation of (2r+1)-planes. We have $K = K_1 \times K_2$ with $K_i \cong \mathbf{SO}(2r+1)$. Let αG denote the component of $\mathbf{I}(M)$ containing β . Then $ad(\alpha)$ has order 2 and interchanges K_1 with K_2 . Viewing \mathbf{G} as the space of antisymmetric real matrices of degree 4r+2, we identify an element of \mathbf{P} with its upper right hand block of degree 2r+1, and then $K = K_1 \times K_2$ acts on \mathbf{P} by (k_1, k_2) : $\mathbf{A} \to k_1 A k_2^{-1}$. Now α acts on \mathbf{P} by $A \to {}^t A$ transpose, so the multiplicity of its (-1)-eigenvalue there is $(2r+1)(2r)/2 = 2r^2 + r$. Thus α acts on the volume element α by: $\alpha(\alpha) = \alpha$ if α is even, $\alpha(\alpha) = -\alpha$ if α is odd. If r=1, then $M=\mathbf{SO}(6)/\mathbf{SO}(3)\times\mathbf{SO}(3)=\mathbf{SU}(4)/\mathbf{SO}(4)$, and, as seen above, the 9-dimensional manifold M/Z is a real cohomology 5-sphere. Now suppose $r\geq 2$, so that dim $M\geq 25$. Then the inclusion of M into the grassmannian of oriented (2r+1)-planes in \mathbf{R}^{∞} is an isomorphism on cohomology of degrees 4 and 8, so the Pontrjagin classes p_1 and p_2 of M are nonzero. Recall $p_i=(-1)^ic_{2i}(\tau_C)$, and $c_{2i}(\eta)=c_{2i}(\bar{\eta})$ for any complex vector bundle η , where c_j is the j-th Chern class, and τ is the tangent bundle. As $\alpha(\tau_C)$ is τ_C or $\bar{\tau}_C$, now $\alpha(p_1)=p_1$ and $\alpha(p_2)=p_2$. Thus M/Z is not a real cohomology sphere. # 3. Products of even spheres We now work out the last ingredient of our main result, proving - **3.1. Proposition.** Let $\overline{M} = \mathbf{S}^{2\tau_1} \times \cdots \times \mathbf{S}^{2\tau_n}$, product of $m \geq 1$ even dimensional spheres, and $\Gamma \subset \mathbf{I}(\overline{M})$ be a finite subgroup such that $M = \overline{M}/\Gamma$ is a riemannian symmetric space. - 1. $H^*(M; \mathbf{R}) = H^0(M; \mathbf{R})$ if and only if Γ consists of all $\gamma = \gamma_1 \times \cdots \times \gamma_m$, where γ_i is either the identity map or the antipodal map of the i-th factor $\mathbf{S}^{2\tau_i}$ of \overline{M} . - 2. M is a real cohomology (dim M)-sphere if and only if Γ consists of all $\gamma = \gamma_1 \times \cdots \times \gamma_m$ as above such that the number of γ_i which are antipodal maps, is even. *Proof.* Let $\nu_i \in I(\overline{M})$ act on the factors of \overline{M} by the identity on S^{2r_s} for $i \neq s$, and by the antipodal map on $\mathbf{S}^{2\tau_i}$. Let Δ denote the group generated by the ν_i , Δ' the subgroup of index 2 consisting of products of an even number of ν_i , and θ_i denote the character on Δ such that $\theta_i(\nu_s) = 1$ for $i \neq s$, and $\theta_i(\nu_i) = -1$. Then the 2^m characters $\theta_{i_1}\theta_{i_2}\cdots\theta_{i_s}$, $1 \leq i_1 < \cdots < i_s \leq m$, are all the characters of Δ , and $\theta_1\theta_2\cdots\theta_m$ is the only nontrivial one which annihilates Δ' . Let $\omega_i \in H^*(\overline{M}; \mathbf{R})$ be the $\mathbf{I}_0(\overline{M})$ -invariant differential form of degree $2r_i$, which annihilates the tangent space to the factors \mathbf{S}^{2r_s} , $s \neq i$, of \overline{M} , and restricts to the volume element of \mathbf{S}^{2r_i} . Then $\nu_i^*\omega_s = \theta_s(\nu_i)\cdot\omega_s$. If $\delta \in \mathcal{A}$, then δ acts on $\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}$ by scalar multiplication with $(\theta_{i_1} \cdots \theta_{i_s})(\delta)$. But the 2^m elements $\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}$, $1 \leq i_1 < \cdots < i_s \leq m$, are a basis of of $H^*(\overline{M}; \mathbf{R})$. Hence **3.2.** Lemma. If $\Psi \subset \Delta$, then the Ψ -invariants on $H^*(\overline{M}; \mathbf{R})$ are just the span of the $\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}$ such that $\theta_{i_1} \cdots \theta_{i_s}$ annihilates Ψ . Now let Γ be a subgroup of Δ , i.e. suppose that \overline{M}/Γ is symmetric. Then $H^*(\overline{M}/\Gamma; \mathbf{R}) = H^0(\overline{M}/\Gamma; \mathbf{R})$ if and only if none of the $\omega_{i_1} \wedge \cdots \wedge \omega_{i_g}$ are Γ -invariant for s > 0. By Lemma 3.2 this latter condition is that no nontrivial character on Δ can annihilate Γ , i.e. Δ/Γ has no nontrivial character, i.e. $\Gamma = \Delta$. Thus the first assertion of the proposition is proved. \overline{M}/Γ is a real cohomology sphere if and only if 1 and $\omega_1 \wedge \cdots \wedge \omega_m$ generate the Γ -invariants on $H^*(\overline{M}; \mathbf{R})$. Lemma 3.2 formulates the latter as the condition that $\theta_1\theta_2\cdots\theta_m$ is the only nontrivial character on Δ , which annihilates Γ , i.e. that $\Gamma = \Delta'$. Thus the second assertion of the proposition is proved. ## 4. Proof of Theorem 1 We prove Theorem 1, stated at the beginning of this note. M is a compact connected riemannian symmetric space, and $M = \overline{M}/\Gamma$ as in the notation of § 1. If \overline{M} is an odd sphere \mathbf{S}^{2n-1} , then $Z = \{\pm I\} \subset G = \mathbf{SO}(2n)$ acts trivially on the real cohomology of \overline{M} ; so \overline{M} and its associated projective space $\overline{M}/Z = \mathbf{S}^{2n-1}/\{\pm I\}$ are real cohomology spheres. If \overline{M} is a product of even spheres, and Γ is the group described in case (2) of the theorem, then \overline{M}/Γ is a real cohomology sphere by Proposition 3.1. If \overline{M} is $\mathbf{SU}(3)/\mathbf{SO}(3)$, then dim $\overline{M} = 5$, and $H^{1}(\overline{M}; \mathbf{R}) = 0$, because \overline{M} is simply connected, $H^2(\overline{M}; \mathbf{R}) = 0$, because \overline{M} is not hermitian symmetric, $H^{3}(\overline{M}; \mathbf{R}) = H^{4}(\overline{M}; \mathbf{R}) = 0$ by Poincaré duality, so \overline{M} is a real cohomology sphere; further $Z=\mathbb{Z}_3$, center of G=SU(3), so $\overline{M}/Z=\{SU(3)/\mathbb{Z}_3\}/SO(3)$ is a real cohomology sphere. Finally if $\overline{M}=SO(5)/SO(2)\times SO(3)$ (oriented real grassmannian), then \overline{M}/Z $= \overline{M}/\{\pm I\} = \mathbf{O}(5)/\mathbf{O}(2) \times \mathbf{O}(3)$ (nonoriented real grassmannian) is a real cohomology sphere by Proposition 2.1. Thus the spaces M listed in Theorem 1 are real cohomology (dim M)-spheres. Conversely, let M be a real cohomology (dim M)-sphere. We run through the alternatives of Lemma 1.2. If M is a circle, it is an odd sphere, listed under (1) in Theorem 1. If M is irreducible, then it is a sphere, SU(3)/SO(3), or $SO(5)/SO(2) \times SO(3)$, by Proposition 2.1, and then M is a sphere or real projective space, SU(3)/SO(3) or $\{SU(3)/Z_3\}/SO(3)$, or $SO(5)/SO(2) \times SO(3)$ or $O(5)/O(2) \times O(3)$; even projective spaces are eliminated both by nonorientability and by $\chi = 1$, and $O(5)/O(2) \times O(3)$ is eliminated by $\chi = 4$; thus M is listed under (1), (2), (3) or (4) of Theorem 1. If M is reducible, then it is a product of even dimensional spheres by Lemma 1.2 and Proposition 2.1, and then M is listed under (2) of Theorem 1, by Proposition 3.1. ## 5. Extension to Theorem 2 We modify the proof of Theorem 1 in such a way as to obtain Theorem 2. Let M be a connected riemannian symmetric space. Then we have the universal riemannian covering $\varphi \colon N \to M = N/\Delta$, and decompose $N = N_0 \times N' \times N''$, where N_0 is a euclidean space, N' a product of compact simply connected irreducible symmetric spaces, and N'' a product of noncompact irreducible symmetric spaces. Δ has trivial projection on $\mathbf{I}(N'')$, so $\Delta \subset \mathbf{I}(N_0) \times \mathbf{I}(N')$; Δ has finite projection on $\mathbf{I}(N')$, so $\Delta_0 = \Delta \cap \mathbf{I}(N_0)$ is a subgroup of finite index; in particular Δ_0 has finite index in the projection of Δ to $\mathbf{I}(N_0)$. The projection of Δ to $\mathbf{I}(N_0)$ is a group of euclidean translations, and this decomposes $N_0 = N_0' \times N_0''$, where Δ acts trivially on N_0'' , and N_0' has compact quotient by the projection of Δ to $\mathbf{I}(N_0)$. Now define $$\overline{M}=\overline{M}' imes\overline{M}'', \quad \overline{M}'=(N_0' imes N')/\varDelta_0, \quad \overline{M}''=N_0'' imes N''$$, so that $$M = M' \times M''$$, where $M' = \overline{M}'/\Gamma$, $M'' = \overline{M}''$, $\Gamma = \Delta/\Delta_0$, and $\varphi: N \to M$ factors through the covering $\pi: \overline{M} \to M = \overline{M}/\Gamma$. M' is a compact connected riemannian symmetric space; M'' is contractible because it is the product of a euclidean space N''_0 and a product N'' of noncompact irreducible symmetric spaces; under the inclusion $\iota: M' \to M$, now $\iota^*: H^*(M; A) \cong H^*(M'; A)$ for any coefficient ring A. This reduces the proof of Theorem 2 to the case dim M'' = 0 where M is compact. Now let M be a compact connected riemannian symmetric space which is a real cohomology n-sphere, where $0 \le n \le \dim M$. Recall our convention that a 0-sphere means a single point. As in §1 we decompose $M = \overline{M}/\Gamma$, $\overline{M} = M_0 \times M_1 \times \cdots \times M_r$, where M_0 is a flat riemannian torus and the other M_i are compact simply connected irreducible symmetric spaces. Lemma 1.1 holds but Lemma 1.2 must be modified. If dim $M_0 > 0$, then, as before, n = 1 and M_0 is a circle. For i > 0, now M_i contributes nothing to $H^*(M; \mathbf{R})$, so M_i is an even dimensional sphere $\mathbf{S}^{2\tau_i}$ by Proposition 2.1. Let Γ' denote the projection of Γ to $\mathbf{I}(M_1 \times \cdots \times M_r)$. Then $\Gamma \to \Gamma'$ is an isomorphism by construction of M_0 , and $\Gamma' \cong (\mathbf{Z}_2)^r$ consisting of all $\gamma' = \gamma_1 \times \cdots \times \gamma_r$ where γ_i is 1 or the antipodal map on $M_i = \mathbf{S}^{2\tau_i}$, by Proposition 3.1. Thus Γ consists of all $\gamma = \gamma_0 \times \gamma'$, where $\gamma' \in \Gamma'$ as just described, and $\gamma_0 = \theta(\gamma')$ for some arbitrary fixed character θ on Γ' . Since there are 2^r choices of θ , our assertions of Theorem 2 are now proved for the case dim $M_0 > 0$. Now we assume dim $M_0 = 0$, so $M = M_1 \times \cdots \times M_{\tau}$. Suppose that \overline{M}/Z is a real cohomology 0-sphere, i.e. that $H^*(\overline{M}/Z; \mathbf{R}) = H^0(\overline{M}/Z; \mathbf{R})$. Then Proposition 2.1 tells us that $M_i = \mathbf{S}^{2r_i}$ even sphere. If n = 0, then Proposition 3.1 says $\Gamma = Z$. If n > 0, then Lemma 3.2 says that $H^*(M; \mathbf{R})$ is spanned by 1 and by some $\omega_{i_1} \wedge \cdots \wedge \omega_{i_s}$, where ω_i is the volume element of M_i , $1 \le i_1 < \cdots < i_s \le r$, s > 0, $n = 2r_{i_1} + \cdots + 2r_{i_s}$, and $\Gamma \cong (\mathbf{Z}_2)^{r-1}$ is the kernel of the character $\theta_{i_1} \cdots \theta_{i_s}$. Thus there are $2^r - 1$ possibilities for Γ , and the assertions of Theorem 2 is proved for the case where M/Z is a real cohomology 0-sphere. Now we assume that M/Z is not a real cohomology 0-sphere. Then n > 0, and M/Z is a real cohomology *n*-sphere. We re-order the M_i now, so that M_1/Z_1 is a real cohomology *n*-sphere and the other M_i/Z_i are real cohomology 0-spheres. Proposition 2.1 tells us - (i) if i > 1, then M_1 is an even dimensional sphere; - (ii) if $n = \dim M_1$, then M_1 is an odd sphere, is SU(3)/SO(3) or is $SO(5)/SO(2) \times SO(3)$. - **5.1.** Lemma. Let M_1 be a compact simply connected irreducible riemannian symmetric space, and Z_1 the centralizer of $\mathbf{I}_0(M_1)$ in $\mathbf{I}(M_1)$, and suppose that M_1/Z_1 is a real cohomology n-sphere where $0 < n < \dim M_1$. Then n = 5, $\dim M_1 = 9$ and $M_1 = \mathbf{SU}(4)/\mathbf{SO}(4) = \mathbf{SO}(6)/\mathbf{SO}(3) \times \mathbf{SO}(3)$. *Proof.* Let $m = \dim M_1$. Then $H^m(M_1/Z_1; \mathbf{R}) = 0$ says that Z_1 acts nontrivially on $H^*(M_1; \mathbf{R})$, so M_1 is one of the ten (types of) spaces listed at the beginning of the proof of Proposition 2.1. If $\chi(M_1) \neq 0$, then $H^k(M_1; \mathbf{R}) = 0$ for k odd, so $H^k(M_1/Z_1; \mathbf{R}) = 0$ for k odd; thus n is even and $\chi(M_1/Z_1) = 2$. Following the proof of Proposition 2.1 for that case, we see $M_1 = \mathbf{SO}(5)/\mathbf{SO}(2) \times \mathbf{SO}(3)$, so n = m = 6, contradicting n < m. Thus $\chi(M_1) = 0$. Following the proof of Proposition 2.1 for that case we see that M_1 is the 9-dimensional $\mathbf{SU}(4)/\mathbf{SO}(4) = \mathbf{SO}(6)/\mathbf{SO}(3) \times \mathbf{SO}(3)$ with $Z_1 \cong \mathbf{Z}_4$ and n = 5. Returning to the proof of Theorem 2, let t = r - 1; then we need only examine the cases (1) $$\overline{M} = \mathbf{S}^{2m+1} \times \mathbf{S}^{2r_1} \times \cdots \times \mathbf{S}^{2r_t}, \quad m > 0, \quad t \geq 0;$$ - (2) $\overline{M} = {\mathbf{SU}(3)/\mathbf{SO}(3)} \times \mathbf{S}^{2\tau_1} \times \cdots \times \mathbf{S}^{2\tau_t};$ - (3) $\overline{M} = \{\mathbf{SO}(5)/\mathbf{SO}(2) \times \mathbf{SO}(3)\} \times \mathbf{S}^{2r_1} \times \cdots \times \mathbf{S}^{2r_t};$ - (4) $\overline{M} = \{\mathbf{SO}(6)/\mathbf{SO}(3) \times \mathbf{SO}(3)\} \times \mathbf{S}^{2r_1} \times \cdots \times \mathbf{S}^{2r_t}.$ In each case let Γ' be the projection of Γ to $\mathbf{I}(\mathbf{S}^{2r_1} \times \cdots \times \mathbf{S}^{2r_t})$. Then Proposition 3.1 says that $\Gamma' \cong (\mathbf{Z}_2)^t$ consists of all $\gamma' = \gamma_1 \times \cdots \times \gamma_t$ where γ_i is 1 or the antipodal map on \mathbf{S}^{2r_i} . And in each case let $\Gamma^0 = \Gamma \cap \mathbf{I}(M_1)$, kernel of $\Gamma \to \Gamma'$. In cases (1) and (2), where Z_1 acts trivially on $H^*(M_1; \mathbf{R})$, the symmetric space \overline{M}/Ψ is a real cohomology (dim M_1)-sphere if and only if Ψ projects onto $\Gamma' = Z_2 \times Z_3 \times \cdots \times Z_{t+1} \cong (\mathbf{Z}_2)^t$. For the action of $\gamma = \gamma^0 \times \gamma' \in Z = Z_1 \times \Gamma'$ on real cohomology of \overline{M} is just that of $1 \times \gamma'$. In case (1) this means that Γ can be $Z \cong (Z_2)^{t+1}$ if $\Gamma^0 \neq \{1\}$; if $\Gamma^0 = \{1\}$ then Γ can be any of the 2^t groups $$\Gamma_{\theta} = \{\theta(\gamma') \times \gamma' \colon \gamma' \in \Gamma'\} \cong (\mathbf{Z}_2)^t$$ where θ is a character on Γ' . In case (2) it means either that $\Gamma^0 \neq \{1\}$ and $\Gamma = Z \cong \mathbb{Z}_3 \times (\mathbb{Z}_2)^t$, or that $\Gamma^0 = \{1\}$ and $\Gamma = \Gamma' \cong (\mathbb{Z}_2)^t$. In cases (3) and (4), where M_1 is not a real cohomology sphere because of a nonzero element $\omega_0 \in H^4(M_1; \mathbf{R})$, that element ω_0 is sent to its negative by a generator z_0 of Z_1 . Let ω_i denote the volume element of $\mathbf{S}^{2\tau_i}$; now we require that no form $\omega_{i_1} \wedge \cdots \wedge \omega_{i_s} \neq 1$, $0 \leq i_1 < \cdots < i_s \leq t$, can be Γ -invariant. As for Proposition 3.1, it follows that Γ separately contains the generator of each Z_i . Thus $\Gamma = Z$, so $\Gamma \cong (\mathbf{Z}_2)^{t+1}$ in case (3) and $\Gamma \cong \mathbf{Z}_4 \times (\mathbf{Z}_2)^t$ in case (4). Conversely, $\Gamma = Z$ implies $M = (M_1/Z_1) \times (\mathbf{S}^{2\tau_i}/\mathbf{Z}_2) \times \cdots \times (\mathbf{S}^{2\tau_t}/\mathbf{Z}_2)$, \mathbf{R} -cohomologically equivalent to the real cohomology sphere M_1/Z_1 . Hence the proof of Theorem 2 is complete. ### References - [1] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groups de Lie compacts, Ann. of Math. 57 (1953) 115-207. - [2] B. Kostant, On invariant skew tensors, Proc. Nat. Acad. Sci. U.S.A. 42 (1955) 148-151. - [3] J. A. Wolf, Locally symmetric homogeneous spaces, Comment. Math. Helv. 37 (1962) 65-101. - [4] —, Spaces of constant curvature, McGraw-Hill, New York, 1967. University of California, Berkeley