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SYMMETRIC SPACES WHICH ARE REAL
COHOMOLOGY SPHERES

JOSEPH A. WOLF

This is a survey in which we collate some known results using semi-standard
techniques, dropping the condition of simple connectivity in Kostant’s work
[2] and proving

Theorem 1. Let M be a compact connected riemannian symmetric space.
Then M is a real cohomology (dim M)-sphere if and only if

(1) M is an odd dimensional sphere or real projective space; or

2) M=M|I" where (a) M = 87 X ... X §m r, >0, product of
m > 1 even dimensional spheres, and (b) I' consists of all y =7, X +«+ X 1
where y, is the identity map or the antipodal map of S¥i, and the number of
1: Which are antipodal maps, is even; or

(3) M = SU@3)/S03) or M = {SU(3)/Z,}/SO(3); or

@) M = 0(5)/02) X O(3), non-oriented real grassmannian of 2-planes
through 0 in R®.

In (2) we note z, (M) = I' = (Z,)™'; in particular the even dimensional
spheres are the case m = 1. In (3) we note that the first case is the universal
3-fold covering of the second case. In (4) we have =, (M) = Z,.

Theorem 1 is based on a series of lemmas which can be pushed, with
appropriate modification, to the case of a real cohomology n-sphere of
dimension greater than n. Here we make the convention that a 0-sphere is a
single point. By using a cohomology theory which satisfies the homotopy axiom
(such as singular theory) we can also drop the requirement of compactness.
Thus we push the method of proof of Theorem 1 and obtain

Theorem 2. Let M be a connected riemannian symmetric space. Then M
is a real cohomology n-sphere, 0 < n < dim M, if and only if M = M’ XM"
where (o) M” is a product whose | > 0 factors are euclidean spaces and
irreducible symmetric spaces of noncompact type, and (8) M’ is one of the
following spaces.

(1) M' =M/, where M = S+ X ... X 8n is the product of m > 0
spheres of positive even dimensions 2r;, I'=(Z,)™ consists of all 7, X - -+ Xy
such that y, is the identity or antipodal map on $*'i, § is any one of the 2™
characters on I', and I'® is the kernel of 0. Express 0 =0, --- 0, where
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1< < - < i, < m, and 0, is the nontrivial character on the Z,-factor of
I' for §*i. Then n = 2r, + --- + 2r, ; so either § =1 with n =0 and
IM=r=@Z)y", orf+1withn>0and I'* = (Z)™".

(Qa) M = (§"*YYZ) X (M|I'),r > 1, and M and I as in (1), product
of an odd dimensional real projective space with m > 0 even dimensional real
projective spaces; n = 2r + 1.

(2b) M’ = (S**"*X M)|T,, r >0, and M and I" as in (1), where § is
any of the 2™ characters on I' (viewed as taking values in the group Z,
consisting of 1 and the antipodal map of §**"), and I', consists of all 8(y) X y
withyel; n=2r+ land I'y = (Z,)™.

3) M = ({SU®B)/SO@3)} X M)/¥, where M and I' are as in (1), Z, is
the center of SUQ), and either ¥ = {I} X 'z Z)™ or ¥ = Z, X [ =
Z, X Z)"; n=275.

4 M = ({SO(5)/SO?2) X SOM3)}/Z,) X (M|I"), where M and I are as
in (1); the first factor of M’ is the non-oriented grassmannian of 2-planes in
R®, expressed as quotient of the oriented grassmannian by {1, n} = Z,, where
y changes the orientation of each 2-plane; n=6.

(5) M’ = ({SO(6)/SO3) X SOD}/Z,) X (M|I"), where M and I are as
in (1); the first factor of M’ is quotient of the oriented grassmannian of 3-
planes in R® by {1, 8, 8%, B*Y = Z,, where § is oriented orthocomplementation
of 3-planes so §* = 7 orientation change; n = 5.

As an immediate consequence of Theorem 2, or of Theorem 1 in the case
n = dim M to which it applies, we have

Corollary. Let M be a connected riemannian symmetric space which is a
real cohomology n-sphere. If a prime p > 3, then M is a Z,cohomology
n-sphere. M is an integral cohomology n-sphere if and only if M = S§* X M"
with M” acyclic as in condition («) of Theorem 2.

1. Cohomology invariants of deck transformations

Let M be a compact connected riemannian symmetric space. Let M)
denote the full group of isometries of M, and I, (M) its identity component.
Now M = G/K, where G = I,(M), compact connected Lie group, and K is
the isotropy subgroup at a point x ¢ M. Let 5 ¢ (M) denote the symmetry at x.
Then the Lie algebra of G decomposes as G = K + P into (& 1)-eigenspaces
of ad(s), K being the subalgebra of G for K and P representing the tangent
space of M at x. Using de Rham’s Theorem and then averaging differential
forms over G, one obtains a graded algebra isomorphism of H*(M; R) onto
the space of adi(K)-invariant elements of A*P’ = Y A*P’ where ’ denotes
dual space. That is E. Cartans’s representation of cohomology by invariant
differential forms; an exposition is given in [4, § 8.5].

In particular, M is a real cohomology (dim M)-sphere if and only if the
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only adg(K)-invariants in A*P’ are the linear combinations of 1 ¢ AP’ and
the volume element w ¢ AP/, n = dim M.

M has universal riemannian covering ¢: N— M, where N=N; X M, X - ..
X M,, N, is a euclidean space, and the M, are compact simply connected
irreducible riemannian symmetric spaces. Let 4CI(N) be the group of deck
transformations, so M = N/4. Then 4, = 4 N I(N,) is a translation lattice on
N,, so My= N,/ 4, is a flat riemannian torus, and ¢ factors through z: M —M
= M |I" where

M:Molexme,, I'=4/4,.

Let G = I(M), % e z~%x), and K be the isotropy subgroup of G at X. Then
we have an identification of G with G, which matches K with K and P with P.

1.1. Lemma. Identify H¥(M; R) with the adg(K)-invariants on A*P’,
and H*(M ; R) with the ad(K)-invariants on A*P’. Then H*(M; R) consists
of the I'-invariants on H*(M ; R).

For G = (GI) /I"and K = (KI')/T", and the cohomology of M is given by
G-invariant differential forms.

Let G, = I(M,), and let Z, denote the centralizer of G, in I(M,). Then
Z, = G,, the other Z; are finite, G = G, X G, X --- X G,, and Z = Z, X Z,
X .. X Z, is the centralizer of G in I(M). Given a subgroup ¥ C I(M), one
knows that M — M /¥ is a riemannian covering with symmetric quotient, if
and only if ¥ is a finite subgroup of Z. Thus ' — Z. We write I’; for the
projection of /" to Z,.

1.2, Lemma. Let M be a real cohomology n-sphere, n = dim M, Then
we have just one of the following situations.

(a) M is a circle.

(b) M is irreducible, the I-invariants on H*(M ; R) are generated by 1
and the volume element, and the Z-invariants on H*(M; R) are generated
either by 1 or by 1 and the volume element.

© M=M,X ... X M, withr > 1; for each i, dim M, > 0 and the
Z.-invariants on H¥*(M,; R) are just the elements 1-R of degree 0.

Proof. Suppose dim M, > 0. As Z, acts trivially on A*(M,; R) it follows
that H*(M; R) has nonzero elements of degree dim M,. Thus M is the torus
M,. Now dim M, = 1, so M is a circle and we are in case (a).

If M is irreducible, the part of (b) on ['-invariants is obvious and the
statement on Z-invariants follows.

Now suppose that we are neither in case (a) nor in case (b). Then dim M,
=0 and M is reducible, so M =M, X - .- X M, with r > 1 and dim M, > 0.
If ¢ is a Z;-invariant of positive degree on H*(M;; R), then ¢ is [-invariant,
so ¢e H*(M; R) with 0 < deg¢ < dimM. Thus the Z,-invariants on
H*(M,; R) are of degree 0.
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2. Admissible factors of M

We go on to find the irreducible symmetric spaces which satisfy the conditions
imposed by (b) or (c) of Lemma 1.2.

2.1. Proposition. Let M be a compact irreducible simply connected
riemannian symmetric space, G = I,(M), and Z be the centralizer of G in
I(M). Then the Z-invariants on H*(M ; R)

(i) are all of degree 0, if and only if M is an even dimensional sphere;

(i) are generated by 1 and the volume element, if and only if M is an odd
dimensional sphere, SU(3)/S0(3), or SO(5)/S0(2) X SO(3).

Proof. If M is a sphere the assertion is clear. If M is a real cohomology
sphere but not a sphere, then [2] M = SU(3)/S0(3), so [4, §9.6] Z is the
center of G and the assertion follows. Now suppose that M is not a real
cohomology sphere. Then Z acts nontrivially on H*(M; R), so Z ¢ G. It
follows [4, Chapters 8 and 9], [3, § 5] that M is one of the spaces:

(1) M =SUQR2n/SIUx) x U], Z = Z,;

(2) M =SUQ2n)/SO0Q2n), Z = Z,,;

3) M =S0Qr + 25 + 1)/SOQ2r) X SOQ2s + 1), Z = Z,;
4) M=8S04n/002n), Z =1,

(5) M = S0Qr + 25)/S0@2r) X SOQ2s),
Z=7,ifr+s,Z=2,X1Z,if r = s;

(6) M =S0@r 4+ 2)/S02r + 1) X SOQ2r + 1), Z = Z,;

(7 M=Sp»/Un), Z = Z,;

(8) M = Sp(2n)/Sp(n) X Sp(n), Z = Z;

® M=E/A, Z=17,;

(10) M =E,/ET, Z = Z,.

Let M = G/K be one of the spaces above. If rank G = rank X, i.e. if the
Euler-Poincaré characteristic y(M) # 0, then we have y(M) = |W,|/|Wg|
where W, = Weyl group of L. As cohomology occurs only in even degree,
and as y(M/Z) = y(M)/ | Z|, it follows that the two conditions for Z-invariants
on H*(M; R) can be phrased

D x(M/2) = 1,ie. |Wq|/ | Wkl |Z|=1;

(i) yM/Z)=2,ie. (Wg|/|Wk|-|Z|=2.
We run through the relevant cases.

(1) yM/Z) = (2n)!/n!n!2 which is > 2 whenever n > 1; we exclude
n = 1 by the condition that M is not a sphere §°.

(3) r>1 because dimM > 0, and s > 1 because M is not a sphere.
Thus ¢t = min (r, s) > 1. Now

A(MJZ) = 27%5(r + )17 1425112 = (r + 9)!/rls! > (20! /14!

with equality if and only if r = s, and (2¢)!/¢!¢! > 2 with equality if and only
ift=1 Thusr = s =1, so M = SO(5)/SO(2) X SO(3), and y(M/Z) = 2.
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4) y(M/Z) =27"'(2n)! /(2n)12 = 2’7 which is > 2 whenever n > 1;
we exclude n = 1 because M is not a product §* X §* of spheres.

(5) r>1ands > 1 because dim M > 0. We exclude thecase r = s = 1
because M is not a product 8? X §? of spheres. Now we may assume 1 < r < s
with s > 1. If r = s, then

yMJZ) = 272 {27t H2 M = 20! rlrl2 > 3.
If r < s, then
Y(M|Z) =277 (r + )1 {27 {25512 = (r + ) /rls! > 2! /rir!l > 2.

(7) n > 1 because M is not a sphere §°. If n = 2 then M = Sp(2);/U(2)
= S0(5)/S0(2) X SO(3) was considered under (3). Now suppose n > 2;
then y(M/Z) = 2°n!/nl2 = 2771 > 2.

(8) y(M|Z)=2"Q2n)!/{2*n!}{27n1}2 = 2n)!/n!n!2 which is >2 for
n > 1; and we exclude the case n = 1 because M is not a sphere S*.

(9) »(M)Z) =2"-3.5.7/8!-2 = 36 > 2.

10) x(M/Z) = 2".3*.5.7/28.3*.5 = 28 > 2.

Hence our assertions are proved in case rank G=rank K. Now we must
check the spaces listed under (2) and (6). For those spaces M = G/K we will
decompose I(M) as a union of components «;G, @, = 1, such that its isotropy
subgroup is a union of components ¢;K. If z ¢ Z, say z € ;G, then z and «;
have the same action on H*(M, R), the space of ad;(K)-invariants on A*P’.
Thus we must analyse the action of K on P’, picking out an invariant ¢ e A*F,
such that 0 < k¥ < dim M and such that ,(¢) = ¢ whenever Z meets «,G.

(2) M = SU(@2n)/SOQ2n). Here G = SUQ2n)/{+1} has center Z, which
has index 2 in Z = Z,,. Note that n > 1 because M is not a sphere §°. We
have [3, p. 88] I(M) = G U sG U oG U saG with isotropy subgroup K U sK
U aK U saK where s is the symmetry and ad(a)|; = ad(a)|; for a matrix
a = diag{—1; 1, ---, 1} e O2n). If Z, denotes the subgroup of order 2 in Z,
then Z, = {1, g} with 8 ¢ «G. Thus we need only find a nonzero K-invariant
pe AP, 0 < k < dim M, such that a(p) = ¢.

The action of K = SO(2r) on the second symmetric power S%R**) decom-
poses as ¢ @ r, where ¢ is the (trivial) representation on the span of the
element representing the invariant inner product on R**, and x is equivalent
to the representation of K on P’.

Let @ € A2***»~1(P’) denote the volume element of M. We check that a(w)
= —@, i.e. that &« has determinant —1 on P’. For if the matrix a of « has
form diag{—1;1, ---,1} in a basis {v,, -- -, v,,} of R*, then its (—1)-
eigenvectors on S*(R*?) are the v,-v,, 2 < i < 2n, which are odd in number.

Borel [1] has shown that the real cohomology of M is that of {§° X 8§ X ...
X 8§73 X 8%, First let n = 2. Then the product is §* X §° so that H*(M; R)
has basis {1, ¢,, ¢;, 0}, Where ¢, ¢ H(M; R) and ¢, N\ ¢; = ». Furthermore
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@) = —w and y(M/Z,) — %X(M) — 0 imply alp) = —g, 40d algy) = o,

Thus M|Z, is a real cohomology 5-sphere of dimension 9. Now let n > 2, so
that H*(M; R) is generated by elements ¢, ¢ H{(M; R) of degrees 5,9, - - -,
4n — 3, and 2n such that (o, Ay A\« -+ A @u_y) N\ @p = 0. I alp,) = ¢, and
alyp;) = ¢, for two distinct indices i, j, then M/Z is not a real cohomology
sphere of any sort. If a{p;) = ¢, for a unique index i, then a(p;) = —¢; for
j # i. There are two indices j == k distinct from i because n > 3, and now «
preserves both ¢, and ¢; A ¢, so again M/Z is not a real cohomology sphere
of any sort.

(6) M = SO4r + 2)/S0Q2r + 1) X SO(2r + 1), grassmannian of oriented
(2r 4 1)-planes in an oriented R***. Then Z = {1, 8, &, f°*} = Z,, where § is
orthocomplementation, and §* = —1I reverses orientation of (2r 4 1)-planes.
We have K = K, X K, with K, = SOQ2r + 1). Let G denote the component
of I(M) containing 5. Then ad(«) has order 2 and interchanges K, with K.
Viewing G as the space of antisymmetric real matrices of degree 4r + 2, we
identify an element of P with its upper right hand block of degree 2r + 1, and
then K = K, X K, acts on P by (k, k,): A — k,Ak;'. Now « acts on P by
A — tA transpose, so the multiplicity of its (—1)-eigenvalue there is
2r + D(2r/2 = 2r* + r. Thus « acts on the volume element o by: alw) =
if r is even, alw) = —ow if r is odd.

If r =1, then M = SO(6)/SO(3) X SO(3) = SU(4)/SO(4), and, as seen
above, the 9-dimensional manifold M/Z is a real cohomology 5-sphere. Now
suppose * > 2, so that dim M > 25. Then the inclusion of M into the grass-
mannian of oriented (2r 4 1)-planes in R~ is an isomorphism on cohomology
of degrees 4 and 8, so the Pontrjagin classes p, and p, of M are nonzero.
Recall p, = (— Die,(ze), and c,(n) = ¢, (7) for any complex vector bundle 7,
where c; is the j-th Chern class, and < is the tangent bundle. As a(z¢) is z¢ or
Zo, Now afp,) = p, and a{p,) = p,. Thus M/Z is not a real cohomology sphere.

3. Products of even spheres

We now work out the last ingredient of our main result, proving

3.1. Proposition. Let M = 8 X ... X §», product of m > 1 even
dimensional spheres, and I — X(M) be a finite subgroup such that M = M |I’
is a riemannian symmetric space.

1. H*(M;R) = H(M; R) if and only if I" consists of all y =y, X -
X 7m, Where v, is either the identity map or the antipodal map of the i-th
factor 8 of M.

2. M is a real cohomology (dim M)-sphere if and only if I" consists of all
y=71. X -+ X 7, as above such that the number of y, which are antipodal
maps, is even.

Proof. Lety, € X(M) act on the factors of M by the identity on $*¢ for
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i & 5, and by the antipodal map on $*:. Let 4 denote the group generated by
the v,, 4’ the subgroup of index 2 consisting of products of an even number
of v;, and @, denote the character on 4 such that §,(v,) = 1 for i # s, and
8,(v;) = —1. Then the 2™ characters 6;0;, --- 6,, 1 < i, < --- <iy <m,
are all the characters of 4, and 6.4, - - - 8, is the only nontrivial one which
annihilates 4.

Let w, € H*(M; R) be the I(M)-invariant differential form of degree 2r,,
which annihilates the tangent space to the factors S$¥s, s == i, of M, and
restricts to the volume element of 8¢, Then v¥w, = 0,(v,)-w,. If § € 4, then
§ acts on w;, A\ --- A w;, by scalar multiplication with (4;, - - - 6;)(3). But
the 2™ elements w, N\ -+ Naoy, 1 <ip < ... <i;<m, are a basis of
of H¥(M; R). Hence

3.2. Lemma. If¥ C 4, then the ¥U-invariants on H*(M; R) are just the
span of the w;, N\ - -+ N\ w,, such that §,, - - - 0, annihilates ¥".

Now let I” be a subgroup of 4, i.e. suppose that M/I" is symmetric. Then
H*(M|I'; R) = H(M/I'; R) if and only if none of the o, A --- N o are
I-invariant for s > 0. By Lemma 3.2 this latter condition is that no nontrivial
character on 4 can annihilate I', i.e. 4/ has no nontrivial character, i.e.
I' = 4. Thus the first assertion of the proposition is proved. M/I” is a real
cohomology sphere if and only if 1 and w, A --- A o, generate the ['-
invariants on H*(M; R). Lemma 3.2 formulates the latter as the condition that
8.8, - - - 8, is the only nontrivial character on 4, which annihilates I', i.e. that
I" = 4. Thus the second assertion of the proposition is proved.

4. Proof of Theorem 1

We prove Theorem 1, stated at the beginning of this note.

M is a compact connected riemannian symmetric space, and M = M/I
as in the notation of § 1.

If M is an odd sphere §7', then Z = {+I} C G = SO(2n) acts trivially
on the real cohomology of M; so M and its associated projective space M/Z
= §*%~!/{+1} are real cohomology spheres. If M is a product of even spheres,
and [" is the group described in case (2) of the theorem, then M/I" is a real
cohomology sphere by Proposition 3.1. If M is SU(3)/SO(3), then dim M = 5,

and
HY(M; R) = 0, because M is simply connected,
H(M; R) = 0, because M is not hermitian symmetric,
H(M; R) = H'(M; R) = 0 by Poincaré duality,
so M is a real cohomology sphere; further Z = Z,, center of G = SU(3), so

M|Z = {SU(3)/Z,}/SO(3) is a real cohomology sphere. Finally if
M = S0(5)/S0(2) X SO(3) (oriented real grassmannian), then M/Z



66 JOSEPH A. WOLF

= M/{£1} = 0(5)/0(2) X O(3) (nonoriented real grassmannian) is a real
cohomology sphere by Proposition 2.1. Thus the spaces M listed in Theorem
1 are real cohomology (dim M)-spheres.

Conversely, let M be a real cohomology (dim M)-sphere. We run through
the alternatives of Lemma 1.2. If M is a circle, it is an odd sphere, listed
under (1) in Theorem 1. If M is irreducible, then it is a sphere, SU(3)/SO(3),
or SO(5)/SO(2) X SO(3), by Proposition 2.1, and then M is a sphere or real
projective space, SU(3)/SO(3) or {SU(3)/Z,}/S0(3), or SO(5)/SO(2) X SO(3)
or 0(5)/0(2) X O(3); even projective spaces are eliminated both by nonorient-
ability and by y = 1, and SO(5)/S0(2) X SO(3) is eliminated by y = 4; thus
M is listed under (1), (2), (3) or (4) of Theorem 1. If M is reducible, then it
is a product of even dimensional spheres by Lemma 1.2 and Proposition 2.1,
and then M is listed under (2) of Theorem 1, by Proposition 3.1.

5. Extension to Theorem 2

We modify the proof of Theorem 1 in such a way as to obtain Theorem 2.

Let M be a connected riemannian symmetric space. Then we have the
universal riemannian covering ¢: N — M = N/4, and decompose N = N,
X N’ X N”, where N, is a euclidean space, N’ a product of compact simply
connected irreducible symmetric spaces, and N” a product of noncompact
irreducible symmetric spaces. 4 has trivial projection on I(N’’), so 4 < I(N,)
X I(N’); 4 has finite projection on I(N’), so 4, = 4NI(N,) is a subgroup of
finite index; in particular 4, has finite index in the projection of 4 to I(NV,).
The projection of 4 to I(N,) is a group of euclidean translations, and this
decomposes N, = Ny X N{’, where 4 acts trivially on N;’, and N{ has compact
quotient by the projection of 4 to I(N,). Now define

M=M XM, M =(N;xXN)/4, M’=N]XN",
so that
M=M X M’, where M = ]l_l//]’, M’'=M', T =4/4,,

and ¢: N — M factors through the covering z: M —-M = M/I". M’ is a
compact connected riemannian symmetric space; M’ is contractible because
it is the product of a euclidean space N; and a product N” of noncom-
pact irreducible symmetric spaces; under the inclusion ¢: M’ — M, now
&1 H¥(M; A) = H*(M’; A) for any coefficient ring 4. This reduces the proof
of Theorem 2 to the case dim M” = 0 where M is compact.

Now let M be a compact connected riemannian symmetric space which is
a real cohomology n-sphere, where 0 < n < dim M. Recall our convention
that a O-sphere means a single point. As in §1 we decompose M = M/T,
M=M,X M, X --- X M,, where M, is a flat riemannian torus and the
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other M, are compact simply connected irreducible symmetric spaces. Lemma
1.1 holds but Lemma 1.2 must be modified.

If dim M, > 0, then, as before, » = 1 and M, is a circle. For i > 0, now
M, contributes nothing to H*(M; R), so M, is an even dimensional sphere §"¢
by Proposition 2.1. Let " denote the projection of I' to I(M, X ... X M,).
Then I' — IV is an isomorphism by construction of M,, and I = (Z,)"
consisting of all " =y, X --. X y, where 7, is 1 or the antipodal map on
M, = §*i, by Proposition 3.1. Thus [" consists of all y =y, X 7/, where
v/ € I'” as just described, and 7, = 8(;) for some arbitrary fixed character ¢
on . Since there are 27 choices of #, our assertions of Theorem 2 are now
proved for the case dim M, > 0.

Now we assume dimM, = 0, soM =M, X ... XM,.

Suppose that M/Z is a real cohomology O-sphere, i.e. that H*(M/Z; R)
= HY(M/Z; R). Then Proposition 2.1 tells us that M, = $*"¢ even sphere. If
n = 0, then Proposition 3.1 says I' = Z. If n > 0, then Lemma 3.2 says
that H*(M; R) is spanned by 1 and by some @;, N --- A w;,, where w, is the
volume element of M, 1 < i, <..- < i, <r,s>0,n=2r 4+ --- 4 2r;,
and I" = (Z,)" " is the kernel of the character @;, - - - 8, . Thus there are 27 — 1
possibilities for I', and the assertions of Theorem 2 is proved for the case
. where M/Z is a real cohomology O-sphere.

Now we assume that M /Z is not a real cohomology O-sphere. Then n > 0,
and M/Z is a real cohomology n-sphere. We re-order the M, now, so that
M,/ Z, is a real cohomology n-sphere and the other M,/ Z; are real cohomology
O-spheres. Proposition 2.1 tells us

(i) ifi> 1, then M, is an even dimensional sphere;

(i) if n=dimM,, then M, is an odd sphere, is SU(3)/SO(3) or is
SO(5)/S0(2) x SO®). '

5.1. Lemma. ZLet M, be a compact simply connected irreducible
riemannian symmetric space, and Z, the centralizer of L(M)) in (M), and
suppose that M,|Z, is a real cohomology n-sphere where 0 < n < dim M,.
Thenn =5, dim M, = 9 and M, = SU4)/S0(4) = SO(6)/S0(3) X SO(3).

Proof. Let m = dim M,. Then H™(M,/Z,; R) = 0 says that Z, acts
nontrivially on H*(M,; R), so M, is one of the ten (types of) spaces listed at
the beginning of the proof of Proposition 2.1.

If y(M)) # 0, then H¥(M; R) = 0 for k odd, so H¥M,/Z; R) = O for k
odd; thus n is even and y(M,/Z,) = 2. Following the proof of Proposition 2.1
for that case, we see M, = SO(5)/S0(2) X SO(3), so n = m = 6, contradicting
n < m. Thus y(M)) = 0. Following the proof of Proposition 2.1 for that case
we see that M, is the 9-dimensional SU(4)/SC(4) = SO(6)/SO(3) x SO(3)
with Z, = Z, and n = 5. g.e.d.

Returning to the proof of Theorem 2, let t = r — 1; then we need only
examine the cases

() M=$m"'x8§1x ... X8, m>0, t>0;
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(2) M = {SU(3)/SO(3)} X &+ X ... X §7¢;

(3) M = {SO(5)/S0(2) X SO(3)} X 8§72 X ... X §¥;

(4 M = {SO(6)/S0(3) X SO(3)} X §7* X ... X §¥¢,

In each case let [V be the projection of [ to I(§** X ... X §¥#), Then
Proposition 3.1 says that /" = (Z,)" consists of all 7/ =y, X --- X y, where
7 is 1 or the antipodal map on 8$*¢. And in each case let /™ = I N I(M,),
kernel of I' — I,

In cases (1) and (2), where Z, acts trivially on H*(M,; R), the symmetric
space M/¥ is a real cohomology (dim M )-sphere if and only if ¥ projects
onto [V =2Z,X Z; X --- X Z,,, = (Z,)". For the actionof y = "X ¢y’ ¢ Z
= Z, X I on real cohomology of M is just that of 1 X /. In case (1) this
means that " can be Z = (Z,)'*' if I"® # {1}; if I = {1} then I" can be any
of the 2* groups

Fy={0G) X 7:7el"= (),

where 4 is a character on /7. In case (2) it means either that I™ == {1} and
I'=2Z=17,X(Z),orthat [ ={1}and I = IV = (Z,)*.

In cases (3) and (4), where M, is not a real cohomology sphere because of
a nonzero element v, ¢ H(M,; R), that element w, is sent to its negative by a
generator z, of Z,. Let w, denote the volume element of $7*; now we require
that no form w;, A\ --- Nw, # 1,0 < i <... <i, <1, can be [-invariant.
As for Proposition 3.1, it follows that I” separately contains the generator of
each Z,. Thus I' = Z, so ' = (Z,)**' in case (3) and I" = Z, X (Z,)* in case
(4). Conversely, I' = Z implies M = (M,/Z)) X (8*:/Z,) X -.- X (§8*"t/Z,),
R-cohomologically equivalent to the real cohomology sphere M,/Z,. Hence
the proof of Theorem 2 is complete.
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